Structure Reports

Online
ISSN 1600-5368

Suchada Chantrapromma, ${ }^{\text {a* }}$ Pumsak Ruanwas, ${ }^{\text {a }}$ Hoong-Kun Fun $^{\text {b }}$ and P. S. Patil ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {b } X \text {-ray Crystallography Unit, }}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{\text {c }}$ Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India

Correspondence e-mail: suchada.c@psu.ac.th, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
$w R$ factor $=0.058$
Data-to-parameter ratio $=21.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-Hydroxystyryl)-1-methylpyridinium 4-bromobenzenesulfonate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrSO}_{3}{ }^{-}$, (I), crystallizes in a non-centrosymmetric space group and exhibits non-linear optical properties. The second-harmonic generation (SHG) effect of (I) is about 0.14 times that of urea. The cation is almost planar and exists in an E configuration. The pyridinium and benzene rings of the cation make a dihedral angle of $4.52(8)^{\circ}$. The dihedral angles between the benzene ring of the anion and the mean planes through the pyridinium and benzene rings of the cation are $67.06(8)$ and $71.56(8)^{\circ}$, respectively. In the crystal structure, the cations and anions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into a three-dimensional network. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also observed in the crystal structure.

Comment

A variety of organic non-linear optical (NLO) materials, such as aromatic compounds with non-localized π-electron systems with a large dipole moment, have been synthesized and reported (Crasta et al., 2004; Feng et al., 2005; Hong et al., 2005; Ravindrachary et al., 2005; Umezawa et al., 2002; Usman et al., 2000). The most important criterion for these NLO materials to exhibit second-order NLO properties is for the molecules to be oriented into a non-centrosymmetric environment (Williams, 1984). Our continuing research on NLO materials (Rahman et al., 2003; Jindawong et al., 2005; Chantrapromma et al., 2005; 2006; Fun et al., 2006) has led us to synthesize the title compound, (I), and its structure determination was carried out in order to obtain detailed information on the three-dimensional structure and crystal packing, which are related to the NLO properties.

(I)

Compound (I) crystallizes in the non-centrosymmetric monoclinic space group $P 2_{1}$. The second-harmonic generation (SHG) of (I) was measured by the classical powder method developed by Kurtz \& Perry (1968) and was found to be about 0.14 times that of urea.

The asymmetric unit of (I) contains a $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}$cation and a $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrSO}_{3}{ }^{-}$anion (Fig. 1). Bond lengths and angles in both cation and anion are in normal ranges (Allen et al., 1987) and

Received 29 October 2006
Accepted 2 November 2006

Figure 1
The asymmetric unit of (I), showing 80% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
are comparable with those observed in a closely related structure (Chantrapromma et al., 2006). The cation is almost planar, as indicated by the dihedral angle between the pyridinium (N1/C7-C11) and benzene (C14-C19) rings of $4.52(8)^{\circ}$ [3.46 (8) ${ }^{\circ}$ in Chantrapromma et al., 2006], and exists in an E configuration with respect to the $\mathrm{C} 12=\mathrm{C} 13$ double bond $[1.345$ (2) \AA, cf. 1.323 (3) \AA in Chantrapromma et al., 2006]. The $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ torsion angle is $179.58(17)^{\circ}$. The methyl substituent is coplanar with the pyridinium ring, as evidenced by the $\mathrm{C} 20-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ torsion angle of 179.22 (17) ${ }^{\circ}$. The benzene ring (C1-C6) of the anion makes a dihedral angle of $67.06(8)^{\circ}$ with the pyridinium ring and a dihedral angle of $71.56(8)^{\circ}$ with the benzene ring of the cation.

In the solid state, the cations and anions of (I) are individually arranged into chains along the c axis. These cationic and anionic chains are individually stacked down the a axis into cationic and anionic sheets, respectively. These cationic and anionic sheets are arranged alternately along the b axis, and are interconnected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to form a three-dimensional molecular network (Fig. 2 and Table 2). The crystal structure is stabilized by these interactions as well as by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring of the anion (centroid Cg 1) (Table 2).

Experimental

2-(4-Hydroxystyryl)-1-methylpyridinium iodide (compound A) was synthesized according to our previously reported method (Chantrapromma et al., 2006). Silver(I) 4-bromobenzenesulfonate (compound B) was synthesized by mixing 4-bromobenzenesulfonylchloride $(2.56 \mathrm{~g}, 10.0 \mathrm{mmol})$ in hot $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$ and sodium hydroxide $(0.42 \mathrm{~g}, 10.0 \mathrm{mmol})$ in hot $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$. A colourless solution formed, which contained a precipitate of sodium chloride which was filtered off; the solution was then evaporated. The residue was dissolved in water mixed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml}, 4: 3, v / v)$. The excess dichloromethane was then evaporated and the residue was dissolved in hot $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{ml})$, followed by the addition of a solution of sodium hydroxide $(0.42 \mathrm{~g}, 10.0 \mathrm{mmol})$ and silver nitrate $(1.71 \mathrm{~g}$, $10.0 \mathrm{mmol})$ in hot $\mathrm{CH}_{3} \mathrm{OH}(80 \mathrm{ml})$. The solid nitrate in the resulting solution was then filtered off and discarded. Compound B was

Figure 2
A packing diagram of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
obtained after allowing the resulting filtrate to stand in air for several days.

The title compound was synthesized by mixing compound A $(0.17 \mathrm{~g}, 0.5 \mathrm{mmol})$ in hot $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{ml})$ and compound $B(0.18 \mathrm{~g}$, $0.5 \mathrm{mmol})$ in hot $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{ml})$. The mixture immediately yielded a yellow solid of silver iodide. After stirring the mixture for ca 30 min , the precipitate of silver iodide was removed and the resulting solution was evaporated to yield a purple solid. Purple block-shaped single crystals of (I) were obtained by recrystallization from $\mathrm{CH}_{3} \mathrm{OH}$ after several days (m.p. 513-516 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+} . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrO}_{3} \mathrm{~S}^{-}$
$M_{r}=448.32$
Monoclinic, $P 2_{1}$
$a=6.2827$ (1) A
$b=19.5377(3) \AA$
$c=7.5025$ (1) A
$\beta=95.923(1)^{\circ}$
$V=916.01(2) \AA^{3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.394, T_{\text {max }}=0.522$
(expected range $=0.360-0.477)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.625 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.38 \mathrm{~mm}^{-1} \\
& T=100.0(1) \mathrm{K} \\
& \text { Block, purple } \\
& 0.48 \times 0.39 \times 0.31 \mathrm{~mm}
\end{aligned}
$$

15947 measured reflections
5286 independent reflections 5107 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=30.0^{\circ}$

Refinement

[^1]\[

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.024 P)^{2}\right. \\
& +0.0214 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 2427 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.013 \text { (4) }
\end{aligned}
$$
\]

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$1.9034(17)$	$\mathrm{S} 1-\mathrm{C} 4$	$1.7771(18)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4535(13)$	$\mathrm{N} 1-\mathrm{C} 20$	$1.474(2)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4551(14)$	$\mathrm{O} 4-\mathrm{C} 17$	$1.358(2)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4671(13)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.345(2)$
$\mathrm{C} 20-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$179.22(17)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$179.58(17)$

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 1$	$0.71(3)$	$1.98(3)$	$2.6833(18)$	$171(3)$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1$	0.93	2.58	$2.921(2)$	102
$\mathrm{C} 6-\mathrm{H} 6 A \cdots 3^{\mathrm{i}}$	0.93	2.49	$3.206(2)$	134
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.26	$3.132(2)$	156
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.93	2.46	$3.111(2)$	127
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1$	0.93	2.41	$3.091(2)$	130
${\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O} 3^{\mathrm{ii}}}^{\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{Cg}^{\mathrm{iv}}}$	0.96	2.34	$3.254(2)$	158
$\mathrm{C} 19-\mathrm{H} 19 A \cdots \mathrm{Cg}^{\mathrm{v}}$	0.93	3.24	$3.9330(19)$	133

Symmetry codes: (i) $x, y, z+1$; (ii) $x+2, y, z+1$; (iii) $-x+2, y+\frac{1}{2},-z+1$; (iv)
$x+1, y, z ;(\mathrm{v})-x+1, y+\frac{1}{2},-z+1$.

The hydroxyl H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for hydroxyl and Me H atoms and $x=1.2$ for all other H atoms. A rotating-group model was used for the methyl groups.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used
to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Thailand Toray Science Foundation for a Science and Technology Research Grant. The authors also thank Prince of Songkla University, the Malaysian Government, and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) No. 304/PFIZIK/ 653003/A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. \& Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.

Chantrapromma, S., Ruanwas, P., Jindawong, B., Razak, I. A. \& Fun, H.-K. (2006). Acta Cryst. E62, o875-o877.

Crasta, V., Ravindrachary, V., Bhajantri, R. F. \& Gonsalves, R. (2004). J. Cryst. Growth, 267, 129-133.
Feng, X.-J., Chantrapromma, S., Fun, H.-K. \& Tian, Y.-P. (2005). Acta Cryst. E61, m1077-m1079.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fun, H.-K., Rodwatcharapiban, P., Jindawong, B. \& Chantrapromma, S. (2006). Acta Cryst. E62, o2725-o2727.

Hong, H., Park, J. W., Lee, K. S. \& Yoon, C. S. (2005). J. Cryst. Growth, 277, 509-517.
Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. \& Karalai, C. (2005). Acta Cryst. E61, o1340-o1342.
Kurtz, S. K. \& Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. \& Karalai, C. (2003). Acta Cryst. E59, o1798-o1800.
Ravindrachary, V., Crasta, V., Bhajantri, R. F. \& Poojari, B. (2005). J. Cryst. Growth, 275, e313-e318.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Umezawa, H., Tsuji, K., Okada, S., Oikawa, H., Matsuda, H. \& Nakanishi, H. (2002). Opt. Mater. 21, 75-78.

Usman, A., Okada, S., Oikawa, H. \& Nakanishi, H. (2000). Chem. Mater. 22, 1162-1170.
Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
 $w R\left(F^{2}\right)=0.058$
 $S=1.07$
 5286 reflections
 249 parameters
 H atoms treated by a mixture of independent and constrained refinement

